Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
arxiv; 2022.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2207.00769v2

ABSTRACT

Class distribution plays an important role in learning deep classifiers. When the proportion of each class in the test set differs from the training set, the performance of classification nets usually degrades. Such a label distribution shift problem is common in medical diagnosis since the prevalence of disease vary over location and time. In this paper, we propose the first method to tackle label shift for medical image classification, which effectively adapt the model learned from a single training label distribution to arbitrary unknown test label distribution. Our approach innovates distribution calibration to learn multiple representative classifiers, which are capable of handling different one-dominating-class distributions. When given a test image, the diverse classifiers are dynamically aggregated via the consistency-driven test-time adaptation, to deal with the unknown test label distribution. We validate our method on two important medical image classification tasks including liver fibrosis staging and COVID-19 severity prediction. Our experiments clearly show the decreased model performance under label shift. With our method, model performance significantly improves on all the test datasets with different label shifts for both medical image diagnosis tasks.


Subject(s)
COVID-19
2.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2009.07652v1

ABSTRACT

The pandemic of coronavirus disease 2019 (COVID-19) has lead to a global public health crisis spreading hundreds of countries. With the continuous growth of new infections, developing automated tools for COVID-19 identification with CT image is highly desired to assist the clinical diagnosis and reduce the tedious workload of image interpretation. To enlarge the datasets for developing machine learning methods, it is essentially helpful to aggregate the cases from different medical systems for learning robust and generalizable models. This paper proposes a novel joint learning framework to perform accurate COVID-19 identification by effectively learning with heterogeneous datasets with distribution discrepancy. We build a powerful backbone by redesigning the recently proposed COVID-Net in aspects of network architecture and learning strategy to improve the prediction accuracy and learning efficiency. On top of our improved backbone, we further explicitly tackle the cross-site domain shift by conducting separate feature normalization in latent space. Moreover, we propose to use a contrastive training objective to enhance the domain invariance of semantic embeddings for boosting the classification performance on each dataset. We develop and evaluate our method with two public large-scale COVID-19 diagnosis datasets made up of CT images. Extensive experiments show that our approach consistently improves the performances on both datasets, outperforming the original COVID-Net trained on each dataset by 12.16% and 14.23% in AUC respectively, also exceeding existing state-of-the-art multi-site learning methods.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL